

The long shutdown 1 (LS1) of LHC a reliable energy upgrade

ARW 2015

M.Solfaroli – CERN, BE dep, OP group

outline

Introduction

- The LHC layout
- The superconducting circuits
- The 2008 incident

Markov The LS1 @LHC

- The Superconducting Magnet And Circuit Consolidation project (SMACC)
- The superconducting circuits re-validation:
 - The Copper Stabilizer Continuity Measurement (CSCM)
 - The Powering tests

Conclusions

2 counter-rotating beams 14 TeV collision energy

CÉRN

4 interaction points 6 experiments

27 km circumference 50 to 170 m underground

The superconducting circuits

- Almost 1600 superconducting circuits operating mostly at 1.9 K
- ♦ 8 sectors cryogenically and electrically separated

Per sector a unique cryostat containing:

- One 13 kA dipole circuit (**154** magnets)
- Two 13 kA quadrupole circuits (49 magnets)
- Large variety of corrector magnets

LHC FODO cell

The magnet interconnects

◆ 1695 magnet interconnects
 ◆ 10170 main superconducting splices carrying a current of about 13 kA
 ◆ NbTi filaments surrounded by copper stabilizer filled with tin

Cold-mass

- Vacuum vessel
 - Line E
 - Cold support post
 - Warm Jack
 - Compensator/Bellows
 - Vacuum barrier

- Pressure wave propagates along the magnets inside the insulating vacuum enclosure
- □ Rapid pressure rise:
 - Self actuating relief valves could not handle the pressure designed for 2 kg He/s, incident ~ 20 kg/s
 - Large forces exerted on the vacuum barriers (every 2 cells) designed for a pressure of 1.5 bar, incident ~ 8 bar
 - Several quadrupoles displaced by up to ~50 cm
 - Connections to the cryogenic line damaged in some places
 - Beam vacuum to atmospheric pressure

♦ 6 tons of He released
♦ He volume increased ~4800
♦ 600 MJ energy released

130 kg of TNT

to melt 750 kg of steel

Maximum safe energy 3.5 - 4 TeV

The LHC timeline

outline

Introduction

- The LHC layout
- The superconducting circuits
- The 2008 incident

Markov The LS1 @LHC

- The Superconducting Magnet And Circuit Consolidation project (SMACC)
- The superconducting circuits re-validation:
 - The Copper Stabilizer Continuity Measurement (CSCM)
 - The Powering tests

Conclusions

LS1 @LHC

The main 2013-14 LHC consolidations

1695 Openings and final reclosures of the interconnections

Complete reconstruction of 3000 of these splices Consolidation of the 10170 13kA splices, installing 27 000 shunts

3

Installation of 5000 consolidated electrical insulation systems 300 000 electrical resistance measurements

10170 orbital welding of stainless steel lines

> 350 persons involved > 1 000 000 working hours

18 000 electrical Quality Assurance tests

10170 leak tightness tests

3 quadrupole magnets to be replaced

15 dipole magnets to be

replaced

Consolidation of the 13 kA circuits in the 16 main electrical feedboxes

The splice consolidation - strategy

ARW 2015 - M.Solfaroli

The splice consolidation

The splice consolidation – before LS1

S. Heck, M. Solfaroli, O. Andreassen, P. Thonet, C. Scheuerlein, A. Ballarino, F. Bertinelli, L. Bottura, P. Fessia, J.-Ph. Tock, "*Non-destructive testing and quality control of the LHC main interconnection splices*", IEEE Trans. Appl. Supercond.

$$R_{excess} = R_{meas} - R_{nominal_max}$$

 $\begin{array}{l} R_{nominal_max \ (RB)} = \textbf{5.6} \ \mu \Omega \\ R_{nominal_max \ (RB)} = \textbf{9.3} \ \mu \Omega \end{array}$

Sector	RB	RQ
	R _{excess} max [μΩ]	
56	28.6	21.1
67	35.0	32.4
78	71.90K for 3.5 TeV 107	
81	41.8	34.4
12	29.6	45.5
23	27.8	43.2
34	33.6	36.3
45	48.3	34.9

Splice	R _{excess} >5 μΩ (%)
M1-Left	8.2
M1-Right	1.3
M2-Left	4.4
M2-Right	3.8
M3-Left	15
M3-Right	2.7

The splice consolidation – after LS1

Quads: $R_{acceptance} = 10.3 \mu\Omega$

Cool-down

Validation: the CSCM

The **Copper Stabiliser Continuity Measurement** is a test that aims to validate:

- ♦ All interconnection splices
- ♦ All current lead–busbar connection on the DFBA
- ♦ All bypass diodes paths

Principle: NO thermal runaway = good result

- Stabilize the entire sector at 20±5 K (magnets no longer superconducting)
- ♦ Apply few hundred A current to open the bypass diodes
- Apply a current pulse, max. 6.5 TeV equivalent, t = 100 s

Time [hh:mm]

Voltages on bus bar segments of a sector (spread is due to RRR and segment length differences)

Validation: the powering tests

Electrical Quality Assurance (check of insulation integrity) followed by a series of current cycles to test the powering interlocks, the protection functionality and the capability of all magnets to reach the required current

LHC powering tests evolution

From September 15th 2014 to April 03rd 2015, **1566 superconducting circuits** have been commissioned through execution and analysis of **about 13.800** test steps at increasing current level

Short – the problem

- During the powering test of one of the main dipole circuits a Earth fault appear
- After investigation the fault was localized in the cold part of the circuits on the diode connection to the magnet (R ~1 Ω)
- The short was very likely caused by a small metallic debris, bridging the half moon with the diode tube

Short – the solution

- Discharge voltage
- ♦ Short resistance
- ♦ Energy dissipated in short
- ♦ Discharge time

~1.5 kJ 906 V to 578 V ~1 Ω ~500 J ~11.5 ms

Conclusions

- The measurements taken during the LS1 proved the importance of the splice consolidation...a long upgrade process, mandatory to operate the machine at higher energy
- The work done has been electrically validated!
- The LHC is now ready to take the challenge to reliably operate at 6.5 TeV

Thank you for the attention!

www.cern.ch

SC circuits consolidation - beyond splices

- 18 cryo magnet replaced
- 612 missing Safety Relief Valves
- Consolidation of **135** splices in Distribution FeedBox
- Replacement of several cryogenic bellows
- Quadrupole diodes consolidation
- Installation of cryogenic Beam Loss Monitors
- Main quadrupole circuits modification
- Electrical non conformity repair
 - Low beta insertions
 - Cryogenic lines
 - ...

Validation: the short-circuit tests

Tests with current performed on the warm part of the circuits:

- Dielectric strength check for cables and energy extraction systems
- Energy extraction current sharing verification
- Interlock signals verification
- Conical connection resistance verification
- Heat run (12h or 24h)

